145 research outputs found

    Methotrexate nanoparticle delivery system for treatment of inflammatory bowel disease in pediatric patients

    Get PDF
    Purpose: To evaluate the efficacy and safety of methotrexate (MTX) nanoparticles in pediatric patients with inflammatory bowel disease (IBD).Methods: In this randomized, open-label clinical study, 28 pediatric patients with moderate to severe IBD were randomly assigned to treatment (MTX  nanoparticles,15 mg/week) or control (azathioprine, AZA, 2 mg/kg/day) group.  Nanoparticles were synthesized by adding calcium chloride to sodium alginate solution containing MTX, and was further treated with poly-L-lysine aqueous  solution. The nanoparticles were evaluated for particle size, zeta potential and drug encapsulation efficacy. Erythrocyte sedimentation rate, C-reactive protein, aspartate aminotransferase, alanine transaminase, and disease activity scores were used to assess IBD remission.Results: Nanoparticle size, zeta potential and encapsulation efficacy were 164.4 ± 6.9 nm, -32.6 ± 3.7 mV, and 97.8 ± 4.2 %, respectively. After 12 weeks of therapy, the mean Pediatric Crohn's Disease Activity Index (PCDAI) scores for control and treatment groups were 22.3 ± 2.14 and 16.8 ± 1.87, respectively, while mean Pediatric Ulcerative Colitis Activity (PUCAI) Index scores were 24.3 ± 1.47 and18.7 ± 1.92, respectively. Eight patients in the treatment and five patients in the control group achieved remission. Biochemical parameters varied significantly between the groups.Conclusion: MTX nanoparticles are safe and more effective than standard first-line IBD therapy. However, further studies are required to determine the suitability of the formulation for therapeutic use.Keywords: Pediatric patient, Methotrexate nanoparticle, Inflammatory bowel disease, Azathioprin

    Chaotic Bayesian optimal prediction method and its application in hydrological time series

    Get PDF
    AbstractThe embedding dimension and the number of nearest neighbors are very important parameters in the prediction of chaotic time series. To reduce the prediction errors and the uncertainties in the determination of the above parameters, a new chaos Bayesian optimal prediction method (CBOPM) is proposed by choosing optimal parameters in the local linear prediction method (LLPM) and improving the prediction accuracy with Bayesian theory. In the new method, the embedding dimension and the number of nearest neighbors are combined as a parameter set. The optimal parameters are selected by mean relative error (MRE) and correlation coefficient (CC) indices according to optimization criteria. Real hydrological time series are taken to examine the new method. The prediction results indicate that CBOPM can choose the optimal parameters adaptively in the prediction process. Compared with several LLPM models, the CBOPM has higher prediction accuracy in predicting hydrological time series

    Role of Macrophage Migration Inhibitory Factor in the Proliferation of Smooth Muscle Cell in Pulmonary Hypertension

    Get PDF
    Pulmonary hypertension (PH) contributes to the mortality of patients with lung and heart diseases. However, the underlying mechanism has not been completely elucidated. Accumulating evidence suggests that inflammatory response may be involved in the pathogenesis of PH. Macrophage migration inhibitory factor (MIF) is a critical upstream inflammatory mediator which promotes a broad range of pathophysiological processes. The aim of the study was to investigate the role of MIF in the pulmonary vascular remodeling of hypoxia-induced PH. We found that MIF mRNA and protein expression was increased in the lung tissues from hypoxic pulmonary hypertensive rats. Intensive immunoreactivity for MIF was observed in smooth muscle cells of large pulmonary arteries (PAs), endothelial cells of small PAs, and inflammatory cells of hypoxic lungs. MIF participated in the hypoxia-induced PASMCs proliferation, and it could directly stimulate proliferation of these cells. MIF-induced enhanced growth of PASMCs was attenuated by MEK and JNK inhibitor. Besides, MIF antagonist ISO-1 suppressed the ERK1/2 and JNK phosphorylation induced by MIF. In conclusion, the current finding suggested that MIF may act on the proliferation of PASMCs through the activation of the ERK1/2 and JNK pathways, which contributes to hypoxic pulmonary hypertension

    Beta-estradiol attenuates hypoxic pulmonary hypertension by stabilizing the expression of p27kip1 in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pulmonary vascular structure remodeling (PVSR) is a hallmark of pulmonary hypertension. P27<sup>kip1</sup>, one of critical cyclin-dependent kinase inhibitors, has been shown to mediate anti-proliferation effects on various vascular cells. Beta-estradiol (β-E2) has numerous biological protective effects including attenuation of hypoxic pulmonary hypertension (HPH). In the present study, we employed β-E2 to investigate the roles of p27<sup>kip1 </sup>and its closely-related kinase (Skp-2) in the progression of PVSR and HPH.</p> <p>Methods</p> <p>Sprague-Dawley rats treated with or without β-E2 were challenged by intermittent chronic hypoxia exposure for 4 weeks to establish hypoxic pulmonary hypertension models, which resemble moderate severity of hypoxia-induced PH in humans. Subsequently, hemodynamic and pulmonary pathomorphology data were gathered. Additionally, pulmonary artery smooth muscle cells (PASMCs) were cultured to determine the anti-proliferation effect of β-E2 under hypoxia exposure. Western blotting or reverse transcriptional polymerase chain reaction (RT-PCR) were adopted to test p27<sup>kip1</sup>, Skp-2 and Akt-P changes in rat lung tissue and cultured PASMCs.</p> <p>Results</p> <p>Chronic hypoxia significantly increased right ventricular systolic pressures (RVSP), weight of right ventricle/left ventricle plus septum (RV/LV+S) ratio, medial width of pulmonary arterioles, accompanied with decreased expression of p27<sup>kip1 </sup>in rats. Whereas, β-E2 treatment repressed the elevation of RVSP, RV/LV+S, attenuated the PVSR of pulmonary arterioles induced by chronic hypoxia, and stabilized the expression of p27<sup>kip1</sup>. Study also showed that β-E2 application suppressed the proliferation of PASMCs and elevated the expression of p27<sup>kip1 </sup>under hypoxia exposure. In addition, experiments both <it>in vivo </it>and <it>in vitro </it>consistently indicated an escalation of Skp-2 and phosphorylated Akt under hypoxia condition. Besides, all these changes were alleviated in the presence of β-E2.</p> <p>Conclusions</p> <p>Our results suggest that β-E2 can effectively attenuate PVSR and HPH. The underlying mechanism may partially be through the increased p27<sup>kip1 </sup>by inhibiting Skp-2 through Akt signal pathway. Therefore, targeting up-regulation of p27<sup>kip1 </sup>or down-regulation of Skp-2 might provide new strategies for treatment of HPH.</p

    Machine-learning-assisted insight into spin ice Dy2Ti2O7

    Get PDF
    Complex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy2Ti2O7. Understanding has been hindered by issues including disorder, glass formation, and interpretation of scattering data. Here, we use an automated capability to extract model Hamiltonians from data, and to identify different magnetic regimes. This involves training an autoencoder to learn a compressed representation of three-dimensional diffuse scattering, over a wide range of spin Hamiltonians. The autoencoder finds optimal matches according to scattering and heat capacity data and provides confidence intervals. Validation tests indicate that our optimal Hamiltonian accurately predicts temperature and field dependence of both magnetic structure and magnetization, as well as glass formation and irreversibility in Dy2Ti2O7. The autoencoder can also categorize different magnetic behaviors and eliminate background noise and artifacts in raw data. Our methodology is readily applicable to other materials and types of scattering problems.Publisher PDFPeer reviewe

    Generation and Role of Oscillatory Contractions in Mouse Airway Smooth Muscle

    Get PDF
    Background/Aims: Tetraethylammonium chloride (TEA) induces oscillatory contractions in mouse airway smooth muscle (ASM); however, the generation and maintenance of oscillatory contractions and their role in ASM are unclear. Methods: In this study, oscillations of ASM contraction and intracellular Ca2+ were measured using force measuring and Ca2+ imaging technique, respectively. TEA, nifedipine, niflumic acid, acetylcholine chloride, lithium chloride, KB-R7943, ouabain, 2-Aminoethoxydiphenyl borate, thapsigargin, tetrodotoxin, and ryanodine were used to assess the mechanism of oscillatory contractions. Results: TEA induced depolarization, resulting in activation of L-type voltage-dependent Ca2+ channels (LVDCCs) and voltage-dependent Na+ (VNa) channels. The former mediated Ca2+ influx to trigger a contraction and the latter mediated Na+ entry to enhance the contraction via activating LVDCCs. Meanwhile, increased Ca2+-activated Cl- channels, inducing depolarization that resulted in contraction through LVDCCs. In addition, the contraction was enhanced by intracellular Ca2+ release from Ca2+ stores mediated by inositol (1,4,5)-trisphosphate receptors (IP3Rs). These pathways together produce the contractile phase of the oscillatory contractions. Furthermore, the increased Ca2+ activated the Na+-Ca2+ exchanger (NCX), which transferred Ca2+ out of and Na+ into the cells. The former induced relaxation and the latter activated Na+/K+-ATPase that induced hypopolarization to inactivate LVDCCs causing further relaxation. This can also explain the relaxant phase of the oscillatory contractions. Moreover, the depolarization induced by VNa channels and NCX might be greater than the hypopolarization caused by Na+/K+-ATPase alone, inducing LVDCC activation and resulting in further contraction. Conclusions: These data indicate that the TEA-induced oscillatory contractions were cooperatively produced by LVDCCs, VNa channels, Ca2+-activated Cl- channels, NCX, Na+/K+ ATPase, IP3Rs-mediated Ca2+ release, and extracellular Ca2+

    Semen cassiae Extract Inhibits Contraction of Airway Smooth Muscle

    Get PDF
    β2-adrenoceptor agonists are commonly used as bronchodilators to treat obstructive lung diseases such as asthma and chronic obstructive pulmonary disease (COPD), however, they induce severe side effects. Therefore, developing new bronchodilators is essential. Herbal plants were extracted and the extracts’ effect on airway smooth muscle (ASM) precontraction was assessed. The ethyl alcohol extract of semen cassiae (EESC) was extracted from Semen cassia. The effects of EESC on the ACh- and 80 mM K+-induced sustained precontraction in mouse and human ASM were evaluated. Ca2+ permeant ion channel currents and intracellular Ca2+ concentration were measured. HPLC analysis was employed to determine which compound was responsible for the EESC-induced relaxation. The EESC reversibly inhibited the ACh- and 80 mM K+-induced precontraction. The sustained precontraction depends on Ca2+ influx, and it was mediated by voltage-dependent L-type Ca2+ channels (LVDCCs), store-operated channels (SOCs), TRPC3/STIM/Orai channels. These channels were inhibited by aurantio-obtusin, one component of EESC. When aurantio-obtusin removed, EESC’s action disappeared. In addition, aurantio-obtusin inhibited the precontraction of mouse and human ASM and intracellular Ca2+ increases. These results indicate that Semen cassia-contained aurantio-obtusin inhibits sustained precontraction of ASM via inhibiting Ca2+-permeant ion channels, thereby, which could be used to develop new bronchodilators
    corecore